• Электромонтажные работы

  • Установка и обслуживание секционных ворот

  • Установка автоматики для ворот

  • Установка и обслуживание домофонов

  • Установка видеонаблюдения

  • Установка и обслуживание охранно-пожарной сигнализации

В статье, "Выбор вводного кабеля и вводного автомата", мы ознакомились с основными принципами выбора кабеля и автоматического выключателя. Зная величину тока для нашей конкретной нагрузки (мощности) а ваттах или киловаттах и определив по ней величину тока, протекающего в нашей электрической цепи, мы легко можем определить, какое электрооборудование нам устанавливать. С одной стороны, надо знать какая величина тока не вызовет его повреждения, а с другой стороны – надо руководствоваться экономической целесообразностью и не устанавливать дорогое оборудование, рассчитанное на большие токи. А в случае с автоматическими выключателями еще и надо их выбирать так, чтобы была обеспечена защита от перегрузки и короткого замыкания в нашей электрической цепи.

Для начала узнаем, для чего предназначен автоматический выключатель и ознакомимся с его устройством и характеристиками а затем на примерах выберем автоматические выключатели для однофазной и трехфазной нагрузок.

Предназначение

Автоматические выключатели предназначены для многоразовой защиты электрических установок от перегрузок и коротких замыканий. Некоторые модели обеспечивают защиту от других аномальных состояний, например, от недопустимого снижения напряжения.

Главным отличием от плавкого предохранителя является возможность многократного использования.

Устройство автоматического выключателя

Автоматический выключательАвтоматический выключатель конструктивно выполнен в диэлектрическом корпусе. Автоматический выключатель, рассчитанный на небольшие токи, часто имеет крепление для монтажа на DIN-рейку.

Включение-отключение производится рычажком (1 на рисунке), провода подсоединяются к винтовым клеммам (2). Защелка (9) фиксирует корпус выключателя на DIN-рейке и позволяет при необходимости легко его снять (для этого нужно оттянуть защелку, вставив отвертку в петлю защелки).

Коммутацию цепи осуществляют подвижный (3) и неподвижный (4) контакты. Подвижный контакт подпружинен, пружина обеспечивает усилие для быстрого расцепления контактов.

Выключение путем расцепления приводится в действие одним из двух расцепителей: тепловым или магнитным через механизм свободного расцепления при перегрузках и коротких замыканиях, а в некоторых типах выключателей и при исчезновении напряжения в первичной цепи.

Механизм свободного расцепления состоит из рычагов, защелок, коромысел и отключающих пружин и предназначен не только для отключения автоматического выключателя но и для устранения его повторного включения без взвода механизма повторного отключения, который, после остывания биметаллической пластины, производится путем перемещения рычажка в положение 0 – отключено.

Тепловой расцепитель представляет собой биметаллическую пластину (5), нагреваемую протекающим током. Биметаллическая пластина представляет собой ленту из двух металлических полос с разными коэффициентами теплового расширения. Две полосы не сплавлены между собой и обычно скреплены с одного конца пайкой или сваркой. Другие концы закреплены неподвижно.  При протекании тока выше допустимого значения биметаллическая пластина изгибается и приводит в действие механизм расцепления. Время срабатывания зависит от тока и может изменяться от секунд до часа. Настройка тока срабатывания производится в процессе изготовления регулировочным винтом (6). В отличие от плавкого предохранителя, автоматический выключатель готов к следующему использованию после остывания пластины.

Электромагнитный расцепитель (отсечка) – расцепитель мгновенного действия, представляет собой соленоид (7), подвижный сердечник которого также может приводить в действие механизм расцепления. Ток, проходящий через выключатель, течет по обмотке соленоида и вызывает втягивание сердечника при превышении заданного порога тока.

Характеристики автоматических выключателей

1) Характеристика MA – отсутствие теплового расцепителя. На самом деле, он действительно не всегда бывает нужен. Например, защиту электродвигателей часто осуществляют при помощи максимально-токовых реле, а автомат в подобном случае нужен лишь для защиты от токов короткого замыкания.

2) Характеристика А. Тепловой расцепитель автомата этой характеристики может сработать уже при токе, составляющем 1,13 от номинального. При этом время до отключения составит более 1 часа. При токе 1,25 от номинального срабатывание должно произойти менее чем за 1 час. При токе, превышающем номинальный в два раза, в действие может вступить электромагнитный расцепитель, срабатывающий примерно за 0,05 секунды. Но если при двукратном превышении тока соленоид еще не сработает, то тепловой расцепитель по-прежнему остается «в игре», отключая нагрузку примерно через 20-30 секунд. При токе, превышающем номинальный в три раза, гарантированно срабатывает электромагнитный расцепитель за сотые доли секунды.

Автоматические выключатели характеристики А устанавливаются в тех цепях, где кратковременные перегрузки не могут возникнуть в нормальном рабочем режиме. Примером могут служить цепи, содержащие устройства с полупроводниковыми элементами, способными выйти из строя при небольшом превышении тока.

3) Характеристика В. Характеристика этих автоматов отличается от характеристики А тем, что электромагнитный расцепитель может сработать только при токе, превышающем номинальный не в два, а в три и более раз. Время срабатывания соленоида составляет всего 0,015 секунды. Тепловой расцепитель при трехкратной перегрузке автомата В сработает через 4-5 секунд. Гарантированное срабатывание автомата происходит при пятикратной перегрузке для переменного тока и при нагрузке, превышающей номинальную в 7,5 раз в цепях постоянного тока.

Автоматические выключатели характеристики В применяются в осветительных сетях, а также прочих сетях, в которых пусковое повышение тока либо невелико, либо отсутствует вовсе.

4) Характеристика С. Это самая известная характеристика для большинства электриков. Автоматы С отличаются еще большей перегрузочной способностью по сравнению с автоматами В и А. Так, минимальный ток срабатывания электромагнитного расцепителя автомата характеристики С составляет пятикратный номинальный ток. При этом же токе тепловой расцепитель срабатывает через 1,5 секунд, а гарантированное срабатывание электромагнитного расцепителя наступает при десятикратной перегрузке для переменного тока и при 15-тикратной перегрузке для цепей тока постоянного.

Автоматические выключатели С рекомендуются к установке в сетях со смешанной нагрузкой, предполагающей умеренные пусковые токи, благодаря чему бытовые электрощиты содержат в своем составе именно автоматы этого типа.

5) Характеристика D – отличается очень большой перегрузочной способностью. Минимальный ток срабатывания электромагнитного соленоида этого автомата составляет десять номинальных токов, а тепловой расцепитель при этом может сработать за 0,4 секунды. Гарантированное срабатывание обеспечено при двадцатикратной перегрузке по току. Автоматические выключатели характеристики D предназначены, прежде всего, для подключения электродвигателей, имеющих большие пусковые токи.

6) Характеристика K отличается большим разбросом между максимальным током срабатывания соленоида в цепях переменного и постоянного тока. Минимальный ток перегрузки, при котором может сработать электромагнитный расцепитель, для этих автоматов составляет восемь номинальных токов, а гарантированный ток срабатывания той же защиты составляет 12 номинальных токов в цепи переменного тока и 18 номинальных токов в цепи постоянного тока. Время срабатывания электромагнитного расцепителя составляет до 0,02 секунды. Тепловой расцепитель автомата К может сработать при токе, превышающем номинальный всего в 1,05 раз.

Из-за таких особенностей характеристики K эти автоматы применяют для подключения чисто индуктивной нагрузки.

7) Характеристика Z также имеет различия в токах гарантированного срабатывания электромагнитного расцепителя в цепях переменного и постоянного тока. Минимальный возможный ток срабатывания соленоида для этих автоматов составляет два номинальных, а гарантированный ток срабатывания электромагнитного расцепителя составляет три номинальных тока для цепей переменного тока и 4,5 номинальных тока для цепи постоянного тока. Тепловой расцепитель автоматов Z, как и у автоматов K, может срабатывать при токе в 1,05 от номинального.

Классификация автоматических выключателей

1. По роду тока главной цепи: постоянного тока; переменного тока; постоянного и переменного тока.

Номинальные токи главных цепей выключателей, предназначенных для работы при температуре окружающего воздуха 40 °C, должны соответствовать ГОСТ 6827. Номинальные токи выключателя выбирают из ряда: 0,5; 1; 1,6; 2; 2,5; 3; 4; 5; 6; 8; 10; 13; 16; 20; 25; 32; 40; 50; 63; 80; 100; 160; 250; 400; 630; 1 000; 1 600; 2 500; 4 000; 6 300 А. Дополнительно могут выпускаться выключатели на номинальные токи для тепловых расцепителей: 1 500; 3 000; 3 200 А.

2. По конструкции:

* АСВ – воздушный автоматический выключатель от 800 А до 6 300 А,

* МССВ – выключатель в литом корпусе от 10 А до 2500 А ,

* МСВ – модульные автоматические выключатели  от 0,5 А до 125 А.

3. По числу полюсов главной цепи: однополюсные; двухполюсные; трехполюсные; четырёхполюсные.

4. По наличию токоограничения: токоограничивающие; нетокоограничивающие.

5. По видам расцепителей: с максимальным тепловым расцепителем тока; с независимым расцепителем; с минимальным или нулевым расцепителем напряжения.

6. По характеристике выдержки времени максимальных тепловых расцепителей тока: без выдержки времени; с выдержкой времени, независимой от тока; с выдержкой времени, обратно зависимой от тока; с сочетанием указанных характеристик.

7. По наличию свободных контактов («блок-контактов» для вторичных цепей): с контактами; без контактов.

8. По способу присоединения внешних проводников: с задним присоединением; с передним присоединением; с комбинированным присоединением (верхние зажимы с задним присоединением, а нижние — с передним присоединением или наоборот); с универсальным присоединением (передним и задним).

9. По виду привода: с ручным; с двигательным; с пружинным.

10. По наличию и степени защиты выключателя от воздействия окружающей среды и от соприкосновения с находящимися под напряжением частями выключателя и его движущимися частями, расположенными внутри оболочки в соответствии с требованиями ГОСТ 14255.

Отключение 

Отключение может происходить без выдержки времени или с выдержкой. По собственному времени отключения tс, о (промежуток от момента, когда контролируемый параметр превзошёл установленное для него значение, до момента начала расхождения контактов) различают нормальные выключатели (tс, о = 0,02-1 с), выключатели с выдержкой времени (селективные) и быстродействующие выключатели (tс, о < 0,005 с).

Селективные автоматические выключатели позволяют осуществить селективную защиту сетей путём установки автоматических выключателей с разными выдержками времени: наименьшей у потребителя и ступенчато возрастающей к источнику питания.

Почему в жару срабатывает автоматический выключатель?

Очень часто абсолютно исправные автоматические выключатели начинают срабатывать в жару. Давайте попробуем разобраться, в чем же «фокус», почему так происходит.

Сразу условимся, что автомат и подключенные приборы исправны, проводка тоже в порядке. Срабатывание происходит через какое-то время после повторного включения автомата.

Как известно, тепловая защита автоматического выключателя срабатывает меньше чем за 1 час, когда ток в линии достигает значения 1,25 · Iн, т.е. когда ток на 25 % превысит номинальный ток автомата. Причем время срабатывания будет меньше одного часа.

Для самого распространенного автомата 16А, устанавливаемого на розеточные группы, начальный ток при котором тепловой расцепитель может сработать меньше чем за 1 час будет 16 · 1,25=20 А.

Таким образом, если при подключенных приборах, через эту групповую линию протекает ток близкий к 16А, автоматический выключатель срабатывать не должен.

Номинальный ток автоматического выключателя, указанный на его корпусе, приводится для температуры окружающей среды +30°С. В каталогах производителей обычно указываются поправки к номинальному току, в зависимости от окружающей температуры.

Вот таблица № 1 из каталога Hager:

Ін (А)

300С

35 0С

400С

450С

500С

550С

600С

0,5

0,5

0,47

0,45

0,4

0,38

-

-

1

1

0,95

0,9

0,8

0,7

0,6

0,5

2

2

1,9

1,7

1,6

1,5

1,4

1,3

3

3

2,8

2,5

2,4

2,3

2,1

1,9

4

4

3,7

3,5

3,3

3

2,8

2,5

6

6

5,6

5,3

5

4,6

4,2

3,8

10

10

9,4

8,8

8

7,5

7

6,4

16

16

15

14

13

12

11

10

20

20

18,5

17,5

16,5

15

14

13

25

25

23,5

22

20,5

19

17,5

16

32

32

30

28

26

24

22

20

40

40

37,5

35

33

30

28

25

50

50

47

44

41

38

35

32

63

63

59

55

51

48

44

40

Кроме того, на величину номинального тока автомата оказывают влияние установленные рядом другие автоматы. И если их много (а в современных электрощитах их обычно на одну DIN-реку устанавливается 12 шт.), да к тому же, если через большинство из них подключена нагрузка, то они могут существенно подогревать друг друга. Таблица 2 из того же каталога Hager:

Количество автоматических выключателей при числе полюсов 1, 2, 3 и 3 + N Коэффициент К
1 1,0
2..3 0,95
4..5 0,9
Больше или равно 6 0,85

Предположим, что температура в электрощите +45°С. В нем установлено 4 автомата с номиналом 16 А. Номинальный ток теплового расцепителя при этой температуре, согласно таблицы № 1 равен 13 А. Ток срабатывания теплового расцепителя для одиночного автомата 1,13 · 13 = 14,69 А. Теперь учтем рядом стоящие 4 автомата и для них применим, согласно таблицы 2 коэффициент 0,9 и посчитаем ток срабатывания 14,69 · 0,9 = 13,221 А. Таким образом, автоматы будут срабатывать при токах, меньше от номинального 16 А, тогда как при 30°С одиночный автомат будет срабатывать при токе 16 · 1,13 = 18,08 А.

Зимой и в межсезонье прохладней, порог срабатывания тепловой защиты выше, с приходом жары этот порог снижается.

Летом иногда встречаются такие ситуации, особенно в офисах, где к одной розеточной группе подключены компьютеры, оргтехника, кондиционеры, линии перегружены, к тому же электрощиты обычно установлены в холлах, где нет кондиционеров и плохо проветривается. Срабатывание автоматов в этих случаях довольно частое явление.